umap-apps Documentation
Release 0.0.3

Marty McFadden

Apr 11, 2023

BASICS

Getting Started 3
1.1 Dependencies e e e e 3
Advanced Configuration 5
BFS 7

UMap Sort 9

umap-apps Documentation, Release 0.0.3

This repository contains applications that use the umap library to manage large regions of memory for them.

* Take a look at our Getting Started guide for all you need to get up and running.

BASICS 1

umap-apps Documentation, Release 0.0.3

2 BASICS

CHAPTER
ONE

GETTING STARTED

1.1 Dependencies

At a minimum, the programs under umap-apps depend cmake 3.5.1 or greater and upon umap being installed.

Follow the instructions for installing umap from the umap repository located here.

1.1.1 Umap-apps Build and Installation

Once the prerequisites are taken care of, the following lines should get you up and running:

$ git clone https://github.com/LLNL/umap-apps.git

$ mkdir build && cd build

$ cmake -DCMAKE_INSTALL_PREFIX=<path to install umap-apps> -DUMAP_INSTALL_PATH=<path to.
—where umap is installed> ..

$ make -j

By default, umap-apps will build a Release type build and will use the system defined directories for installation. To
specify different build types or specify alternate installation paths, see the Advanced Configuration.

Should you wish to also install the applications in their respective installation directories, type:

$ make install

Umap-apps installs files to the 1ib, include and bin directories of the CHAKE_INSTALL_PREFIX.

https://llnl-umap.readthedocs.io/en/develop/getting_started.html

umap-apps Documentation, Release 0.0.3

4 Chapter 1. Getting Started

CHAPTER
TWO

ADVANCED CONFIGURATION

Listed below are the umap-specific options which may be used when configuring your build directory with cmake. Some
CMake-specific options have also been added to show how to make additional changes to the build configuration.

cmake -DUMAP_INSTALL_PATH="<path to where umap is installed>"

Here is a summary of the configuration options, their default value, and meaning:

Variable Default | Meaning
UMAP_INSTALL_PATH not set | Location of umap
CFITS_LIBRARY_PATH | notset | Location of cfitsio library
CFITS_INCLUDE_PATH | not set Location of cfitsio include files
CMAKE_CXX_COMPILER | not set C++ compiler to use
DCMAKE_CC_COMPILER | not set C compiler to use

These arguments are explained in more detail below:
e UMAP_INSTALL_PATH Location of prerequisite umap installation.

e CFITS_INCLUDE_PATH and CFITS_LIBRARY_PATH If these are specified, then the applications that use FITS
files as the backing store for umap() will be built.

umap-apps Documentation, Release 0.0.3

6 Chapter 2. Advanced Configuration

CHAPTER
THREE

BFS

BFS

Generate Edge List Using an R-MAT Generator
*** /rmat_edge_generator/generate_edge_list

-0 [out edge list file name (required)]

-s [seed for random number generator; default is 123]
-v [SCALE; The logarithm base two of the number of vertices; default is 17]
-e [#of edges; default is 22 {17} x 16]

-a [initiator parameter A; default is 0.57]

-b [initiator parameter B; default is 0.19]

-c [initiator parameter C; default is 0.19]

-1 [if true, scrambles edge IDs; default is true]

-u [if true, generates edges for both directions; default is true]

* As for the initiator parameters, see [Graph500, 3.2 Detailed Text Description](https://graph500.org/?page_id=
12#sec-3_2) for more details.

Generate Graph 500 Inputs

"bash ./rmat_edge_generator/generate_edge_list -o /mnt/ssd/edge_list -v 20 -e
$C(2%*20%16)) ~°

* This command generates a edge list file (/mnt/ssd/edge_list) which contains the edges of a SCALE 20 graph.

In Graph 500, the number of edges of a graph is #vertices x 16 (16 is called ‘edge factor’) as an undirected graph.

* Note that #edges generated by this generator is #vertices x 16 x 2 if -u option (generates edges for both directions)
is true, which is default.

¢ This is a multi-threads (OpenMP) program. You can control the number of threads using the environment variable
OMP_NUM_THREADS.

Ingest Edge List (construct CSR graph)

"bash ./ingest_edge_list -g /mnt/ssd/csr_graph_file /mnt/ssd/edge_listl /mnt/ssd/
edge_list2 °

* Load edge data from files /mnt/ssd/edge_listl and /mnt/ssd/edge_list2 (you can specify an arbitrary number of
files). A CSR graph is constructed in /mnt/ssd/csr_graph_file.

* Each line of input files must be a pair of source and destination vertex IDs (unsigned 64bit number).

https://graph500.org/?page_id=12#sec-3_2
https://graph500.org/?page_id=12#sec-3_2

umap-apps Documentation, Release 0.0.3

* This program treats inputs as a directed graph, that is, it does not ingest edges for both directions.

* This is a multi-threads (OpenMP) program. You can control the number of threads using the environment variable
OMP_NUM_THREADS.

¢ As for real-world datasets, [SNAP Datasets](http://snap.stanford.edu/data/index.html) is popular in the graph
processing community. Please note that some datasets in SNAP are a little different. For example, the first line
is a comment; you have to delete the line before running this program.

Run BFS

"bash ./run_bfs -n [#of vertices] -m [#of edges] -g [/path/to/graph_file] -s °
* You can get #of vertices and #of edges by running ingest_edge_list.
 If ‘-5’ is specified, the program uses system mmap instead of umap.

* The interface to the umap runtime library configuration is controlled by environment variables, see [Umap Run-
time Environment Variables](https://lInl-umap.readthedocs.io/en/develop/environment_variables.html).

* This is a multi-threads (OpenMP) program. You can control the number of threads using the environment variable
OMP_NUM_THREADS. It uses the static schedule.

Tips for Running Benchmark (on large-scale) * The size of generated edge lists could be larger than the constructed
CSR graph by a few times. As the rmat_edge_generator writes edges to files sequentially, you should be able to
directly generate edge lists to a parallel file systems without an unreasonable execution time. * On the other hand,
ingest_edge_list constructs a CSR graph causing a lot of random writes to a file mapped region (the location of the
file is specified by -g option). We highly recommend that you should construct a graph on DRAM space, e.g., tmpfs,
although you can still read input edge list files from a parallel file system.

Example Run BFS on a SCALE 20 R-MAT graph using 4 threads and system mmap. “bash env
OMP_NUM_THREADS=4 ./rmat_edge_generator/generate_edge_list -o /mnt/ssd/edge_list -v 20 -e
$((2%%20%16)) env OMP_NUM_THREADS=4 ./ingest_edge_list -g /dev/shm/csr_graph_file /mnt/
ssd/edge_list* mv /dev/shm/csr_graph_file /mnt/ssd/csr_graph_file sudo sync sudo echo 3 >
/proc/sys/vm/drop_caches # drop page cache env OMP_NUM_THREADS=4 ./run_bfs -n $((2%%20))
-m $((2%%20*%16*2)) -g /mnt/ssd/csr_graph_file -s °

8 Chapter 3. BFS

http://snap.stanford.edu/data/index.html
https://llnl-umap.readthedocs.io/en/develop/environment_variables.html

CHAPTER
FOUR

UMAP SORT

UMap Sort

Map in a file of integers and then sort it

Example

Sort an array of 96 GB stored in data_file using 4 threads.

* drop_page_cache free_mem env UMAP_PAGESIZE=$umap_psize ./umapsort -f ${SSD_MNT_PATH}/
data_file -p $(((96*1024*1024*1024) /umap_psize)) -N 1 -t 4 °

	Getting Started
	Dependencies
	Umap-apps Build and Installation

	Advanced Configuration
	BFS
	UMap Sort

